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Abstract We consider the interesting smoothing method of global optimization recently
proposed in Lau and Kwong (J Glob Optim 34:369–398, 2006) . In this method smoothed
functions are solutions of an initial-value problem for a heat diffusion equation with external
heat source. As shown in Lau and Kwong (J Glob Optim 34:369–398, 2006), the source helps
to control global minima of the smoothed functions—they are not shifted during the smooth-
ing. In this note we point out that for certain (families of) objective functions the proposed
method unfortunately does not affect the functions, in the sense, that the smoothed functions
coincide with the respective objective function. The key point here is that the Laplacian might
be too weak in order to smooth out critical points.
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1 Introduction

We consider the following unconstrained global optimization problem:

minimize f : R
n −→ R (1.1)

where f is a twice continuously differentiable function.
Among various approaches trying to solve (1.1) there is the interesting one of smoothing.

The idea of a smoothing method is to evolve the objective function f into a new (smoothed)
function possessing much fewer local minima, in the best case only one. Afterwards one
searches for a global minimum of the smoothed function using local minimization tech-
nique. However, a global minimum of the smoothed function determined in a such way can
happen to differ from a global minimum of the objective function. It can be caused by shifting
effects while smoothing.
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So it is necessary to employ a kind of reversing procedure to get back to a global minimum
of the original objective function.

As one can imagine, two properties of a such smoothing method are crucial:

(�) the number of local minima of the smoothed function is significantly smaller than that
of the objective function,

(��) the information about a global minimum of the smoothed function must lead to a global
minimum of the objective function.

Among different smoothing methods proposed in the literature we mention: diffusion equa-
tion methods [1,2,6], the effective energy method [4] and the effective energy transformation
scheme [7]. Most of them stem from molecular chemistry applications and deal in particular
with the Lennard-Jones problem (see [5] for further details and more references). Here we
want to discuss a smoothing method recently suggested by Lau and Kwong [3]. The smoothed
function for the problem (1.1) is defined in their method as u(t, x) : [0, T )×R

n → R, T > 0,
satisfying the following initial-value problem:{

∂u
∂t (t, x) = min{0,�u(t, x)} (t, x) ∈ (0, T ) × R

n,

u(0, x) = f (x) x ∈ R
n,

(1.2)

where � denotes the Laplacian in x-coordinates.
Due to the equality min{0,�u(t, x)} = �u(t, x)−max{0,�u(t, x)}, the governing equa-

tion is a heat diffusion equation with the external heat source − max{0,�u(t, x)}. Two main
results for this initial-value problem were obtained in [3], assuming some growth conditions
on f :

(i) the initial-value problem (1.2) has the unique viscosity solution u(t, x),
(ii) a global minimum of u(t, ·) coincides with that of f for all t ∈ (0, T ).

Obviously the above result (ii) corresponds to the property (��) of a smoothing method: a
reversing procedure is not to be carried out, because global minima of f are not shifted during
smoothing at all.

Our aim here is to discuss the property (�) of the underlying smoothing method from [3].
The Laplacian on the right-hand side of (1.2) gives rise to suppose, that the local structure of
a critical point x̄ of f (i.e. with D f (x̄) = 0) will be changed during the smoothing process.
However, the Laplacian only describes the sum of the eigenvalues of the Hessian D2 f (x̄),
but not their signs. In this sense the Laplacian might be too weak in order to smooth.

From this intuitive observation we get an idea to construct an objective function f with
the non-negative Laplacian on R

n (� f (x) ≥ 0). From the fact min{0,� f (x)} = 0 for such
a function we obtain: u(t, x) := f (x) is a solution for the initial-value problem (1.2), so the
smoothing method based on it does not change the objective function and generates the same
smoothed function as f in this case. If the objective function f has an additional property
of possessing several local minima, we can see that the underlying method would not make
any progress in smoothing out these local minima.

Moreover, as the main result we construct a quite wide family of such objective func-
tions, each of them having a non-trivial set of local minima and saddle points and being the
smoothed function with respect to (1.2) itself. It shows, that the smoothing method from [3]
can not be applied successfully at least for such families of objective functions.

2 A special family of objective functions

We start with a two-dimensional example communicated by Wagner (pers. commun.).
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Example 2.1 Consider f (x, y) = (x2 − 1)2 + ay2, where a ∈ R. It holds:

D f (x, y) = (4(x2 − 1)x, 2ay); D2 f (x, y) =
(

12x2 − 4 0
0 2a

)
.

For a > 2 we obtain � f (x, y) = 12x2 − 4 + 2a > 0. The set of local minima for f is
{(1, 0), (−1, 0)} and the set of critical points with quadratic index 1 is the singleton {(0, 0)}.

Next we generalize the idea of Example 2.1.

Theorem 2.2 Let n ≥ 2 and gi : R → R i = 1, . . . , n − 1 be twice continuously differ-
entiable functions with second derivatives bounded from below on R. Let Amin

i and Amax
i

denote the set of non-degenerate local minima and local maxima of gi respectively.
Then there exists a real number a > 0, such that the function f : R

n → R defined as

f (x1, . . . , xn) :=
n−1∑
i=1

gi (xi ) + ax2
n (2.1)

has following properties:

(i) � f (x1, . . . , xn) ≥ 0 for all x = (x1, . . . , xn) ∈ R
n,

(ii) the number of non-degenerate critical points of f with quadratic index 0 ≤ k ≤ n − 1
is equal to

∑
P ⊂ {1, . . . , n − 1}
|P| = k

∏
i∈P

|Amax
i |

∏
j∈{1,...,n−1}\P

|Amin
j |. (2.2)

Here |·| denotes the cardinality of a set (∞ is allowed). To avoid misleadings by multiplication
in formula (2.2) we assume, as usual, for c ≥ 0:

c · ∞ =
{

0, c = 0,

∞, else.

Proof We obtain for f :

D f (x1, . . . , xn) = (g′
1(x1), . . . , g′

n−1(xn−1), 2axn),

D2 f (x1, . . . , xn) = diag(g′′
1 (x1), . . . , g′′

n−1(xn−1), 2a),

� f (x1, . . . , xn) =
n−1∑
i=1

g′′
i (xi ) + 2a.

The last equality and the boundness from below of g′′
i allow us to find a > 0 sufficiently

large, so that (i) holds.
Moreover, the set of non-degenerate critical points of f is A1 × · · · × An−1 × {0}, where

Ai := Amin
i ∪ Amax

i . This observation and the formula for D2 f prove (ii). 	

Example 2.3 For particular gi from the Theorem 2.2 we can take

(1) each polynomial of an even degree with a positive leading coefficient (finite number of
local minima),
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(2) sine and cosine functions (infinite number of local minima),
(3) a smooth function defined for x0 ∈ R and r > 0 as following:

νx0,r (x) =

⎧⎪⎨
⎪⎩

exp

(
1(

x−x0
r

)2−1

)
, |x − x0| < r,

0, |x − x0| ≥ r.

Adding such functions νx0,r to the already constructed gi in the small enough neighbor-
hoods of its critical points x0 we can additionally achieve different critical values for the
objective function f .

3 Final remarks

Due to the referee’s observation, the method in [3] may still be able to handle f from (2.1)
indirectly. Each global minimum of f over R

n has the form (x∗
1 , x∗

2 , . . . , x∗
n−1, 0), where

(x∗
1 , x∗

2 , . . . , x∗
n−1) is a global minimum of

∑n−1
i=1 gi over R

n−1. So, a global minimum of f

can be obtained by minimizing
∑n−1

i=1 gi .
However, one may slightly modify the proposed function f from Theorem 2.2:

f̃ (x1, . . . , xn) :=
n−2l∑
i=1

gi (xi ) + a
l∑

j=1

h j (x2 j−1+n−2l , x2 j+n−2l). (3.1)

Here, 0 ≤ l ≤ ⌊ n
2

⌋
, a > 0 and gi are given as in Theorem 2.2. Moreover, h j (x, y) :=

u j (x, y)+ v j (x)+w j (y), where u j : R
2 → R are harmonic functions and v j , w j : R → R

are twice continuously differentiable functions with second derivatives bounded from below
on R by positive constants.

For a > 0 sufficiently large, we obtain � f̃ ≥ 0. It means: the smoothed function with
respect to (1.2) is f̃ itself. In this case, if possible, an indirect treating would be more sophis-
ticated.

For further research it would be very interesting to find out, for what (classes of) functions
arising in applications, the method in [3] does make progress in smoothing out critical points.
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